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First, the Cooper Pairs

Paired electrons moving freely (without resistance)
through a crystal lattice
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Bound Electron Pairs in a Degenerate
Fermi Gas*

Leox N. Coorer
Physics Depariment, University of Ilinois, Urbana, Ilinois
(Received September 21, 1956)

T has been proposed that a metal would display

superconducting properties at low temperatures if
the one-electron energy spectrum had a volume-inde-
pendent energy gap of order A~~k7T., between the
ground state and the first excited state.!* We should
like to point out how, primarily as a result of the
exclusion principle, such a situation could arise.
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T has been proposed that a metal would display

superconducting properties at low temperatures if
the one-electron energy spectrum had a volume-inde-
pendent energy gap of order A~~k7T., between the
ground state and the first excited state.!* We should
like to point out how, primarily as a result of the
exclusion principle, such a situation could arise.

. an attractive interaction between two fermions near the Fermi surface leads
to the appearance of a bound pair. The noninteracting ground state lowers its
energy by an amount A, becoming unstable.
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Migdal Formalism: Electrons in an electron-ion system

SOVIET PHYSICS JETP VOLUME 34 (7), NUMBER 1 JULY, 1958
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Moscow Engineering-Physics Institute
Submitted to JETP editor July 12, 1957; resubmitted October 24, 1957.
J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 139-150 (January, 1958).

1t is shown that the energy and damping of quasiparticles are determined by the poles of a single
particle propagation function. The relation between the two-particle Green’s function and the

kinetic equation is established.
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A method is developed which enables one to obtain the electron-energy spectrum and disper-

sion of the lattice vil i without ing that the int ion between electrons and pho-
nons is small.




The Normal State Self Energy: Electrons in an electron-ion
system

The phonons and the electrons are mutually interacting and
affecting each other’s properties.

- 1 A (iwn — iwm) eff rs
Y (k,iw,) = 3 kz/: [ N (1) — V| G (K, iwm)

This means that we have an effective electron-electron
interaction due to the emission and absortion of phonons

verf — Viw off _ EkK

kk' — e kk" — €

and a dressed electron-phonon interaction with a phonon
frequency renormalized by the accompanying electron cloud .
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A perturbation theory is developed for the Green’s function in which the Green’s function cal-
culated for the superconducting ground state is used as the zero approximation. Dyson equa-
tions are written down from which the electron Green’s function can be determined. Interac-

tion between electrons and phonons is not assumed to be small. The spectrum and the damping
of the excitations are calculated.
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SOVIET PHYSICS JETP VOLUME 12, NUMBER 5 MAY, 1961

TEMPERATURE GREEN’S FUNCTION FOR ELECTRONS IN A SUPERCONDUCTOR

G. M. ELIASHBERG
Leningrad Physico-Technical Institute, Academy of Sciences, U.S.S.R.
Submitted to JETP editor July 4, 1960
J. Exptl. Theoret. Phys. (U.S.S.R.) 39, 1437-1441 (November, 1960)

The temperature Green’s function for elect are d by the
diagram technique for T = 0. An estimate is mxde of the region near the critical tempera~
ture for which the usual analysis, which makes use of a temperature-dependent gap in the
excitation spectrum, is no longer valid. The magnitude of this temperature range is of the
order of (24 (0)/wg)* Te.




The Superconducting State Green Function

It is defined as:
G(k,7—7)=— <TT [\le (T)\TJL (7'/)]>7

where the field operators are given by

Uy =

) b

This give us the Green function:




The Superconducting State Self Energy

Using diagrammatic perturbation techniques (Feynman
diagrams) it is found that the Green function satisfies the
Dyson equation:

G (k,iw,) = Gyt (k,iwy) — 5 (k, iw,),
where the single particle Green function is given by:

Cl\;o_l (k’[wn) _ ( 1Wp — Ek 0 > :

0 iw, + €
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The Linearized Migdal-Eliashberg Equations (LMEE) with
constant DOS are

||

pA, = WTZ {/\,,m T 6,,,,,7”_} A,

here p is the breaking parameter that becomes zero at T.. The frequency @,
is
Gn=wn+7T > Aomsign (wm) ,
m

and iw, are the Matsubara frecuencies, iw, = inT (2n+1). The coupling
parameter A, is defined as

oo 2
/\nm:2/ dwwaF (w) .
0 w2+ (wn—wm)




The Linearized Migdal-Eliashberg Equations (LMEE) with
energy dependent DOS are

pBo =T Y [am = 1*) f(Gn]) = Som |Gl | B

m

here p is the breaking parameter that becomes zero at T.. The frequency @,

is
On = wp + TFTZ Anmsig(wm)/v(|£)m|),

= inT (2n+1). The function

and jw, are the Matsubara frecuencies, iw,
N(|@m|) is defined as

- 1 [ N() |
N(|@n]) = = de S Lad] R
(1) W/oo N (1) |Gon]? + €2
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The early days of room-temperature superconductivity

VorumE 21, NUMBER 26 PHYSICAL REVIEW LETTERS 23 DECEMBER 1968

METALLIC HYDROGEN: A HIGH-TEMPERATURE SUPERCONDUCTOR?

N. W. Ashcroft
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14850
(Received 3 May 1968)

Application of the BCS theory to the metallic modification of gen sug-
gests that it will be a high-t This has i

astrophysical consequenees, as well as implications for the possible development of a

superconductor for use at elevated temperatures. M O re th an 4 0 O G P a

veck endi
VOLUME 92, NUMBER 18 PHYSICAL REVIEW LETTERS ;ﬁmf'nzrﬁ

Hydrogen Dominant Metallic Alloys: High Temperature Superconductors?

N.W. Asheroft
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501, USA
Denastia International Physies Center, San Sebastian, Spain
(Received 29 December 2003: published 6 May 2004)

The arguments suggesting that metallic hydrogen, either as a monatomic or paired metal, should be a
candidate for high temperature superconductivity are shown to apply with comparable weight to alloys
of metallic hydrogen where hydrogen is a dominant constituent, for example. in the dense group IVa
hydrides. The attainment of metallic states should be well within current capabilities of diamond anvil
cells, but at pressures considerably lower than may be necessary for hydrogen.
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The early days of room-temperature superconductivity at
high pressure conditions
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The early days of room-temperature superconductivity at
ambient pressure

Besides applied pressure, doping is another procedure for metal-
lization, thus to induce or increase superconductivity by enhancing
some properties like the electronic density of states at the Fermi
level (N (0)) or the electron-phonon coupling.
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Metallization: From semiconductor to superconductor
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Metallization: From semiconductor to superconductor
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Enhancement: Becoming a superconductor due to doping
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Evolution of the total density of states at the Fermi
level, N(0), for Scy_1MyH> and Yy_1MxH> as a
function of the M content x. )
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Enhancement: Becoming a superconductor due to doping
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Improvement: Boosting the superconducting T, due to
doping

Cubic NaCl (B1) structure (space group
Fm3m) of the Sc,_ 1 MyHs and Y, _1MyHs
solid solutions. The Scandium(Ytrium) and
Hydrogen atoms are represented by large red
and small blue spheres, respectively.




Improvement: Boosting the superconducting T, due to
doping
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Cubic NaCl (B1) structure (space group
Fm3m) of the Sc,_ 1 MyHs and Y, _1MyHs
solid solutions. The Scandium(Ytrium) and
Hydrogen atoms are represented by large red
and small blue spheres, respectively.




Improvement: Boosting the superconducting T, due to
doping
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Equation of state of Sc,_ 3 MxH3 and Y,_3 MyHs, for different
metal M content (x), studied within the ZPE scheme.




Improvement: Boosting the superconducting T. due to
doping
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Improvement: Boosting the superconducting T, due to
doping
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Improvement: Boosting the superconducting T, due to
doping
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Improvement: Boosting the superconducting T, due to
doping
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Improvement: Boosting the superconducting T, due to

doping
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Superconducting critical temperature, T, calculated
with p* = 0.15, of Scx_1MyH3 and Yy_1MyHs at
the entire range of electron- and hole-content and ap-
plied pressure for each solid-solution.
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Superconducting critical temperature, T¢, calculated
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plied pressure for each solid-solution.
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Maximum superconducting critical temperature, T,
calculated with u* = 0.15 and 0, of Sc,_1MyxH3 at
the entire range of electron- and hole-content for each
solid-solution.
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Maximum superconducting critical temperature, T,
calculated with p* = 0.15 and 0, of Yy_3MyHs at
the entire range of electron- and hole-content for each
solid-solution.




Next:

@ Sc_1MHsz and Yy_1M,Hs in the HPC structures at ambient
pressure.

o Lax,ll\/IXHz and Lax,ll\/lXHg,.



See You Space Cowgirl,

Someday, Somewhere....



	anm3: 
	3.2: 
	3.1: 
	3.0: 
	anm2: 
	2.17: 
	2.16: 
	2.15: 
	2.14: 
	2.13: 
	2.12: 
	2.11: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	anm1: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


